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NACA 65(215)A018 ATRFOIL SECTIONS WITH AND

WITHOUT VORTEX GENERATORS INSTALLED

By James P. Shivers
SUMMARY

An investigation has been made on a rotor having NACA 63(215)A018

airfoil sections over approximately the outer 0.5 radius to determine
the maximum mean 1lift coefficients at low tip Mach numbers and the
compressibility effects at high tip Mach numbers. The maximum mean
1lift coefficient obtained for this rotor was 1.06. At a tip Mach
number of 0.7l, the rotor encountered compressibility drag losses at a
rotor-blade mean lift coefficient of about 0.40. The pitching moments
of the rotor blades were small, and the nosedown pitching-moment break
was delayed beyond the point where the profile power started to
increase.

The use of vortex generators to alleviate rotor-blade stall pro-
duced significant gains in rotor-blade mean 1lift coefficients, although
with some penalty in profile torque at low 1lift coefficients.

INTRODUCTION

One means of reducing compressibility losses on a helicopter rotor
is to employ a reasonably small thickness-chord ratio of the blade.
This solution may not always be possible. For example, if a pressure-
jet system were employed on a helicopter, the use of an airfoil of con-
ventional thickness-chord ratio would require that small internal ducts
be used in the blade, and these small ducts may, in turn, lead to
relatively large internal losses. Thus, for pressure-jet rotor systems,
it may be necessary to accept greater external compressibility losses
in order to maintain reasonably efficient internal flow.

In order to select an airfoil section for a pressure-jet rotor
system, it is necessary to know the performance that will be obtained
by using relatively thick airfoil sections in the rotor. The present




paper gives the performance of a rotor having NACA 63(215)A018 airfoil

sections. This test is a continuation of a general research program
(refs. 1 to 6) investigating performance characteristics of similar
rotors for which airfoil section is the primary variable. Although
the data are obtained for the hovering condition, the onset and rate
of growth of stall and compressibility effects can be analyzed quali-
tatively to aid in the selection of airfoil sections for high-speed
rotors in forward flight.

The hovering performance of the rotor is presented for a tip Mach
number range from 0.27 to 0.76 and a corresponding blade tip Reynolds

number range from 1.67 X 10% to k.59 x 10°. The rotor was tested at
disk loadings as high as 7.0 pounds per square foot. The maximum 1ift
of the rotor at low tip Mach numbers and the drag-divergence charac-
teristics at higher Mach numbers are discussed and compared with
unpublished two-dimensional NACA 6h3-018 airfoil data previously

obtained in the Langley low-turbulence pressure tunnel.

The performance characteristics of thick airfoil sections may be
seriously limited by stall starting at the trailing edges of the air-
foils. In order to extend the usable performance of the rotor to
higher 1ift coefficients, vortex generators were installed on the
blades for a portion of the tests. The hovering performance of the
rotor with the vortex generator installed is presented and compared
with the performance of the smooth-blade rotor.

SYMBOLS
b number of blades
Cn rotor-blade pitching-moment coefficient, MY2
o) 2
R=(QR) ce
2
CQ rotor torque coefficient, ——Q—
1R%p(QR) R
CQ,o rotor profile-drag torque coefficient, ————f%l————
#R%p (QR)°R
Cp rotor thrust coefficient, L

%R0 (AR) 2
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blade chord at radius r, ft

airfoil-section drag coefficient

airfoil-section profile drag coefficient

R
cr2dr

0

R J
L[‘ r2dr

0

rotor-blade lift coefficient

equivalent blade chord,

mean rotor-blade lift coefficient, 6Cp/o
blade chord at tip

rotor-blade Mach number

rotor-blade-tip Mach number
rotor-blade pitching moment, 1b-ft
Reynolds number at blade tip, pQRct/p

rotor torque, lb-ft

rotor profile-drag torque, 1b-ft
rotor-blade radius, ft

radial distance to a blade element, ft
rotor thrust, 1b

blade section angle of attack, deg or radians as specified
blade-section-tip angle of attack, deg or radians as specified

blade-section pitch angle measured from line of zero lift, deg

coefficient of viscosity, slugs/ft-sec



p mass density of air, slugs/cu ft
g rotor solidity, beg/nR
Q rotor angular velocity, radians/sec

APPARATUS AND TEST METHODS

Rotor Blades

A fully articulated, two-blade rotor was used for this investiga-
tion. The flapping hinge was located on the center of rotation and the
drag hinge was located 12 inches outboard of the center line.

A sketch of the rotor blade with pertinent dimensions is shown in
figure 1. The rotor solidity was 0.033, and the radius from the center
line of rotation was 18.84 feet. The blades were built of metal with
5.5° of linear washout. Laminated balsa wood covered with fiber glass
was added to the blade of reference 1 and contoured so as to maintain
-an NACA 65(215)A018 airfoil section over approximately the outer half

of the blades. Since the outer 50 percent of the rotor span is
responsible for about 75 percent of the rotor thrust and torque, it is
believed that the rotor can be considered essentially as a complete
rotor having NACA 65(215)A018 airfoil sections. The surfaces of the

airfoils were smooth and fair over the entire chord of the glove.

Test Methods and Accuracy

The rotor was tested on the Langley helicopter test tower. The
height of the rotor head above ground level (42 feet) is such that
ground effect on the rotor should be negligible. The test procedure
was the same as that of reference 1. The blades were tested over a
tip Mach number range from 0.27 to 0.76. The tip Mach number of 0.76
was the limiting Mach number due to structural limitations of the rotor
blades.

In order to study the flow for conditions near stall, tufts were
mounted on the rotor blade in the same manner as that described in ref-
erence 1. A high-speed (128 frames per sec) motion-picture camersa was
mounted on the rotor head to record the tuft motion during the tests at
low tip speeds and high pitch angles.

The estimated accuracies of the basic quantities measured during
the tests are similar to those of reference 1 and the plotted results
are believed to be within +3 percent.
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RESULTS AND DISCUSSION

Results Obtained for Plain Rotor

The rotor thrust, torque, and figure of merit measured over the
range of tip Mach numbers are prgggnted in figures 2 to 4. A maximum
value of mean lift coefficient ¢y of 1.06 was obtained for this

rotor (fig. 3). This value compares with E;,max = 1.15 measured for

rotor blades having NACA 635-015 airfoil sections. (See ref. 3.) At
My = 0.71, E? reached a value of about 0.40O before drag divergence.

Drag divergence was exceeded at zero thrust for a tip Mach number of
0.75. (See fig. 2.)

The rotor efficiency of the present test is similar to that
obtained for the rotor of reference 1 for values of E{ less than

0.80. Adverse effects of stall above c¢; = 0.80 caused the rotor
efficiency to decrease quite rapidly. (See fig. 3.)

Calculated values of the rotor induced torque coefficient were
used to determine the measured profile torque coefficients. The meas-~
ured profile torque coefficient was referenced to the profile torque
coefficient calculated with the assumption of no compressibility or
stall effects. This ratio is presented in terms of the calculated
blade-tip angle of attack and rotor mean 1lift coefficient in figures 5
and 6, respectively. The profile drag at low tip speeds starts to
increase at a tip angle of attack of the order of 6.5° to 7.5°. The
early drag divergence at this speed is believed to be caused by stall.
The suspected stall is substantiated from the motion pictures showing
the tufts mounted on the blade. The stall was observed to occur first
at the trailing edge near the midspan and then spread forward and. out-
ward as the tip angle of attack was increased. A similar stall condi-
tion was observed on the thick airfoils of reference 7. Drag divergence
at zero rotor-blade-tip angle of attack occurs between tip Mach numbers
of 0.71 and 0.75; this value is slightly lower than that observed for
the rotor blade having NACA 0015 airfoil tip sections (ref. 1).

A comparison of the rotor-blade-tip Mach numbers and angles of
attack at which drag divergence occurs with those indicated by unpub-
lished two-dimensional NACA 6&5-018 airfoil data (previously obtained in

the Langley low-turbulence pressure tunnel) indicates large variations
in Mach numbers as divergence occurs with increasing angle of attack
(fig. 7). It is believed that the large measured reduction in diver-
gence Mach number at the higher angles of attack is caused by the rotor-
blade stall as observed in the motion pictures made of the tufts.



The measured rotor-blade pitching moments (fig. 8) include both
mass and aerodynamic moments. The resultant moments are shown to be
small and slightly noseup over most of the thrust-coefficient range.
It 1s believed that the shape of the curves is more significant than
the actual magnitudes. The nosedown pitching-moment break is delayed
beyond the point where profile torque starts to increase.

Tests With Vortex Generators Installed

The rotor performance (fig. 2) shows a rapid increase in rotor-
blade torque coefficient with a gradual increase in thrust coefficient
for values of thrust coefficient over 0.0044k. The separated flow, as
observed in the high-speed motion pictures, causes the profile torque
to increase. Vortex generators were employed as a means of controlling
the flow separation over the rearward section of the rotor blade.

The vortex generators, as seen in sketch in figure 9, were uniform,
were airfoil shaped, and were mounted with their leading edges placed
at about the 46-percent blade chord. They were mounted in pairs at

16° angle of attack with respect to a plane perpendicular to the blade
span. The trailing edges of the airfoils in each pair were spaced -
0.24 inch apart. The height of the airfoils was initially 0.30 inch

but after preliminary tests the height was reduced to 0.15 inch. The

chord was 0.30 inch, and the gap between pairs of airfoils was "
0.20 inch. The generators were installed over the entire length of

the blade section having NACA 63(515)A018 airfoil sections.
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The vortex generators, as initially installed, were 0.30 inch high.
A few runs with these generators installed indicated that the profile
torque was increased prohibitively, so the height was reduced to
0.15 inch. All data presented herein were obtained with the short
vortex generators.

No systematic tests were made in order to arrive at an optimum
vortex-generator configuration. It is conceivable that suitable
changes in height, chordwise location, spanwise spacing, and angle of
attack might result in a vortex-generator installation which would have
essentially the same effects on 1ift coefficient but which would pro-
duce smaller drag than the present installation.

Performance Measurements

In comparing the hovering performance for the rotor with and
without vortex generators (fig. lO), it can be seen that in the low .
thrust-coefficient range the profile torque coefficient is higher for
the blades with the generators. Thus, there is some penalty in power
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in this particular range. Above Cp = 0.0048, however, the installa-

tion of generators permitted the blades to reach higher angles of attack
before stall reappeared, thereby giving substantial gains in thrust
coefficient.

An alternate way of showing the gains in Ef is given in figure 11
where the data are referenced to the blade without generators. A study
of the motion pictures of the tuft pattern on the rotor without vortex
generators indicated that portions of the blade trailing edge were
stalled at the higher pitch angles. With the vortex generators
installed, the rotor blade had much less stalled area for a given
pitch angle. For portions of the azimuth, some stall was indicated at
the higher blade pitch angles; this stall was due to small flapping
angles caused by a low wind condition. Thus, the gains in rotor-blade
mean lift coefficients are obtained by a reduction in stalled area in
the higher rotor-blade pitch range.

Rotor Efficiency

The efficiency of the rotor with vortex generators (fig. 12) is
less than that of the blade without generators for values of E{ below

0.9. This difference is a result of the added profile torque caused by
the installation of the vortex generators. Above c; = 0.9, however,

the efficiency of the rotor with the generators is substantially
greater than the efficiency of the one without generators. It is
believed that the reduction in flow separation over the rearward por-
tion of the rotor blade yields the improved efficiency.

it is possitle that the decrease in rotor efficiency in the low
thrust range, as a result of the installation of vortex generators,
would be less for a rotor blade of practical construction tested under
the same conditions since the production rotor blades would probably
have a higher zero-lift profile drag because of manufacturing tolerances
than do the smooth rotor blades used in the present investigation. If
s0, the same absolute increase in torque due to the presence of the
vortex generators would represent an appreciably smaller percentage of
the total profile torque requirement.

SUMMARY OF RESULTS

A rotor blade having NACA 65(215)A018 airfoil sections over approxi-
mately the outer 0.5 radius has been tested with and without vortex



generators throughout a tip Mach number range from 0.27 to 0.76. The
results of this investigation were as follows: -

1. The maximum rotor-blade mean 1ift coefficient obtained was
1.06. This value may be compared with a value of 1.15 measured pre-
viously on a rotor having NACA 632—015 airfoil sections.

2. At a tip Mach number of 0.71, the rotor-blade mean lift coeffi-
cient reached a value of about 0.40 before drag divergence. At a tip
Mach number of 0.75, an increase in profile-drag torque due to com-
pressibility effects was indicated even at zero thrust.

3. The pitching moments were small and were slightly noseup over
most of the thrust-coefficient range. The nosedown pitching-moment
break was delayed beyond the point where profile torque started to
increase.

=W

4, The figures of merit obtained for the present rotor without
vortex generators were close to those obtained on the rotor blades
having NACA 0015 tip airfoil sections up to a rotor-blade mean 1lift
coefficient of about 0.80. At higher thrust the adverse effects of
stall reduced the efficiency quite rapidly.

5. Motion pictures of tufts mounted on the rotor blade indicated
that stalling was initiated in the region of the trailing edge and
gradually spread forward. The same trend was shown in previous two-
dimensional tests of airfoils with similar thickness ratios.

6. The use of vortex generators to alleviate rotor-blade stall
produced significant gains in maximum rotor-blade mean lift coefficients
with some penalty in profile torque at low lift coefficients.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., February 4, 1960.
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Figure 4.- Effect of tip Mach number on rotor thrust coefficient.
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Segment of rotor blade having NACA 63(215)1\018 airfoil section‘A

Figure 9.- Vortex-generator installation on rotor blade having
NACA 65(215)A018 airfoil sections. Linear dimensions are in inches.
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